No, the SAT doesn’t just “measure income”

I started this post to refute some specific arguments, but I changed my mind midstream and decided to add a lot more material than I initially envisioned. This is best viewed as being akin to a FAQ (Frequently Refuted Objections – FRO?) relating to the standardized tests and their use in higher education.

SAT and income are not perfectly correlated

The SAT is certainly modestly correlated with parental income, but it is simply not true that the SAT is nothing more than a measure of family income.

I will briefly plot the 2011 SAT reading scores by income level to illustrate that the r**2 is considerably less than one.

There is significant overlap across the entire income distribution:

satv_boxwhiskers.png
Box and whisker plot of simulated test scores
satv_distribution_by_count.png
Simulated distribution by actual test taker counts

Read More »

On the relationship between negative home owner equity and racial demographics

There are a large and growing number of popular media articles alleging racial discrimination in the mortgage market.   It is simply assumed that if lenders are less willing to extend credit to blacks or make loans in “black neighborhoods” as often or with similarly favorable terms as they do whites or “white neighborhoods” that this apt to be explained by explicit racism or (subconscious) bias.  These naive arguments persist despite tremendous evidence that there are observable and unobservable differences that have profound effects on credit risk.

I will briefly describe some of this evidence before making my own modest contribution using data from zillow.com and the US census. You can click here if you are familiar with this literature already and wish to skip ahead to my analysis.

1- Blacks have much lower credit scores (e.g., FICO) 

Google Chrome.png

source

The difference in between the white and black means is about 1 standard deviation.

Read More »

On the effects of wealth on the B-W gaps, a response to questions posed by a commenter

Max, a commenter, asked:

Could you do an analysis on racial differences in educational outcomes after controlling for parental education, parental occupation, household wealth, neighborhood wealth, neighborhood education, single parent status, native language etc.? I’ve seen you control for family income and parental education (and occasionally both), but I’ve never seen you control for more beyond that (perhaps I’ve missed something!). In Chapter 16 of Affirmative Action for the RichThe Future of Affirmative Action, Dalton Conley of New York University used the Panel Study of Income Dynamics to show that parental wealth (not income) and parental education are the best predictors of college completion, which means that they may also be good predictors of other educational outcomes. He also discussed the data showing that racial wealth gaps are much larger than racial income gaps, which implies that wealth could account for a larger portion of the achievement gap than income. Could you do a similar analysis for IQ? The reason I’m asking for all this is that Carnevale and Strohl control for all of these factors and are left with a very small race effect: http://www.tcf.org/assets/downloads/tcf-CarnevaleStrivers.pdf

I have heard this bit about wealth before.  I am deeply skeptical that wealth can mediate much, if any, of the B-W gap.

Before I dig into this though, let’s take a very brief look at some of the studies Max cited (see here and here) :

Read More »

A quick post on gun related homicides

While I am personally ambivalent about gun ownership and suspect it plays an incremental role in relative differences between countries/regions/etc (holding other things roughly equal), I thought I’d add some perspective into this argument about the presumed causality of gun ownership on homicide rates.

Mother Jones analysis includes gun suicides and makes no attempt to correct for even course-grain racial/ethnic confounds.


I downloaded the 2009-2013 data for gun-related homicides by race/ethnicity from the CDC’s WONDER database  and compared it to the gun ownership rate data via wikipedia.

gundeaths_by_gunownership

I do not feel like doing a lengthy analysis here and now, but suffice it to say that once you remove suicides and race/ethnicity from the equation the case gets much weaker.

There is no evidence of a positive correlation here for blacks and hispanics (if anything somewhat negative).

There is a positive correlation for non-hispanic whites (r=0.45), but it pales in comparison to the racial/ethnic differences here.  To put this into perspective, amongst non-hispanic whites (the bulk of the gun owners in most states), states with the highest gun ownership rates have just 1 death per 100,000 more than states with the lowest rates (on average).

Read More »

On sex differences within California public schools

A year or two ago I read an article which demonstrated that sex differences in math and reading achievement are inversely related within and across countries on the PISA tests.  The smaller the male-female math gap, the larger the verbal gap and vice versa.  This tends to support the view that there are innate underlying differences in average abilities and interests between the sexes that strongly influence these patterns.

 

Google Chrome

 

 

Google Chrome

Read More »

On educational attainment rates and income as a causative factor

As I mentioned to Robert VerBruggen in his latest piece on educational attainment and income, I do not believe that economic concerns are a major cause of differences in education attainment rates by income.

I previously analyzed this and related issues using the ELS:2002 data, but I decided to extend my analysis with NLSY97 and clarify my views, now that I have marshaled a fair amount of data to support my arguments.

First

Although the IQ (ASVAB) is an excellent predictor and generally mediates these differences fairly well, there are other systematic differences that are not fully accounted for when you control for IQ.   High SES people, whether measured by income or educational attainment, typically have higher GPAs even with the same test scores.

gpa_by_asvab_income_b5

hsgpa_by_asvab_fed

(these differences would likely to be larger still if I did this as a composite SES index using education, income, occupational prestige, etc)

Read More »

IQ, test scores, GPA, income, and related correlations from NLSY97

Diving into the NLSY97 dataset a bit right now and I thought I’d share some plots pertaining to IQ/achievement tests, income, GPA, educational attainment, and more.   Nothing here is particularly novel, if you’ve looked for this sort of data before, but sometimes it’s nice to have additional independent analysis or alternative presentations of the data.


High school GPA-test score relationships

HS GPA by ASVAB in percentiles (IQ test)

gpa_by_asvab_q25

HS GPA by PIAT (Peabody Individual Achievement Test, IQ test admin. in early childhood)

gpa_by_piat

Read More »

Understanding socioeconomic mobility

Although it may not seem like it at first blush, given the apparently modest correlations, the socioeconomic figures that I blogged about earlier largely agree with the published data on economic mobility.

They are measuring income (or earnings) whereas I am measuring with the ELS SES index (which is an equally weighted average of the respondents own earnings as of 2011, educational attainment, and occupational prestige), but the systematic income differences between classes (however measured) are almost certainly virtually fully mediated by this more comprehensive SES measure.

ELS data, students 2011 SES by 2002 SES of parents

ses_mobility_all_people

The correlation between parent SES and child SES is 0.35.  This may not sound like much, but if you bin child SES and parent SES into quintiles the mobility estimates are very similar to the widely publicized economic mobility estimates.

Microsoft Excel (1)

Microsoft Excel

The average person born at the top of the SES distribution has little chance of ending up at the bottom and vice versa, but there is clearly a great deal of mobility that happens amongst less extreme groupings.

[Note: I didn’t correct these figures for oversampling, so I won’t claim they’re a perfect representation of reality, but they are generally pretty close in practice and they still are good for illustrative purposes.]

Mobility delta (child SES – parent SES) by parent SES

ses_mobilty_all_people

On average, as compared to their parents, high SES people are downward mobile and low SES people are upward mobile.  This may seem counter-intuitive to some, but this makes sense because r < 1, i.e., there is non-trivial mobility, and this must be true for there to be meaningful relative mobility.  Of course, just because there is mobility doesn’t imply that all people have an equal chance of ending up in any place in the SES distribution.

As I mentioned in my last post, there are other differences between groups besides just propensity to end up in particular SES bins and many of these differences are highly predictive of mobility — see test scores, HS GPA, etc.  Indeed, they almost fully mediate outcomes, so talking in terms of “mobility” here can be a bit misleading because relative starting position (parent SES) tells you relatively little about what is likely once you have better information (e.g., test scores, HS GPA, etc).

Read More »